This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation. On this basis, a hierarchical lateral stability control system is developed. The upper controller determines stability requirements based on driver inputs and vehicle states, switches between handling assistance mode and stability control mode, and generates yaw moment and speed control torques transmitted to the lower controller. The lower controller optimally distributes these torques to the four wheels. Through closed-loop Double Lane Change (DLC) tests under low-, medium-, and high-road-adhesion conditions, the results demonstrate that the proposed hierarchical estimation method offers high computational efficiency and superior estimation accuracy. The hierarchical control system significantly enhances vehicle handling and stability under low and medium road adhesion conditions.
Read full abstract