This study utilizes the Simulator of Hydrologic Unstructured Domains (SHUD) model and the China Meteorological Forces Dataset (CMFD) to investigate the hydrological dynamics of the Buha River watershed, a critical tributary of Qinghai Lake, from 1979 to 2018. By integrating high-resolution terrestrial and meteorological data, the SHUD model simulates streamflow variations and other hydrological characteristics, providing valuable insights into the region’s water balance and runoff processes. Key findings reveal a consistent upward trend in precipitation and temperature over the past four decades, despite minor deviations in daily precipitation intensity and relative humidity data. The SHUD model demonstrates high accuracy on a monthly scale, with Nash–Sutcliffe Efficiency (NSE) values of 0.72 for the calibration phase and 0.61 for the validation phase. The corresponding Kling–Gupta Efficiency (KGE) values are 0.73 and 0.49, respectively, underscoring the model’s applicability for hydrological forecasting and water resource management. Notably, the annual runoff ratios for the Buha River fluctuate annually between 0.11 and 0.21, with significant changes around 2007 correlating with a shift in Qinghai Lake’s water levels. The analysis of water balance indicates a net leakage over long-term periods, with spatial alterations in leakage and replenishment along the river. Furthermore, snow accumulation, which increases with altitude, significantly contributes to streamflow during the melting season. Despite the Buha River basin’s importance, research on its hydrology remains limited due to data scarcity and minimal human activity. This study enhances the understanding of the Buha River’s hydrological processes and highlights the necessity for improved dataset accuracy and model parameter optimization in future research.
Read full abstract