Many species of the Urticaceae family are important cultivated fiber plants that are known for their economic and industrial values. However, their secondary metabolite profiles and associated biosynthetic mechanisms have not been well-studied. Using Laportea bulbifera as a model, we conducted widely targeted metabolomics, which revealed 523 secondary metabolites, including a unique accumulation of flavonol glycosides in bulblet. Through full-length transcriptomic and RNA-seq analyses, the related genes in the flavonoid biosynthesis pathway were identified. Finally, weighted gene correlation network analysis and functional characterization revealed four LbUGTs, including LbUGT78AE1, LbUGT72CT1, LbUGT71BX1, and LbUGT71BX2, can catalyze the glycosylation of flavonol aglycones (kaempferol, myricetin, gossypetin, and quercetagetin) using UDP-Gal and UDP-Glu as the sugar donors. LbUGT78AE1 and LbUGT72CT1 showed substrate promiscuity, whereas LbUGT71BX1 and LbUGT71BX2 exhibited different substrate and sugar donor selectivity. These results provide a genetic resource for studying Laportea in the Urticaceae family, as well as key enzymes responsible for the metabolism of valuable flavonoid glycosides.