Progressive burial of artificial markers over a 5-year period is used to determine the rate and pattern of vertical accretion within a large backbarrier salt marsh on the UK east coast. Over this period, annual accretion varies spatially from 1 to 8 mm yr −1. The arithmetic mean rate for the whole marsh is 3.9 mm yr −1. Spatial variability in accretion is a joint function of (1) elevation-dependent inundation frequency and (2) progressive sediment removal from water masses advected across channel margins. Accretion is, therefore, inadequately represented by simple averaging of point measurements. Numerical integration of the ‘accretion surface’ results in a spatial average rate of around 3 mm yr −1, well below the arithmetic mean rate. Short-term sediment trap deployments show that local and long-range meteorological effects, and remobilisation of sediment deposited within tidal creeks, often mask the expected link between tidal height and sedimentation rate. Retention of sediment on plant surfaces is minimal, with direct settling accounting for approximately 95% of total deposition. Time-extrapolation of weekly sediment trap data, and comparison with the 5-year marker horizon burial, shows that processes associated with ordinary tides can account for long-term accretion over most of the marsh. However, the highest surfaces receive appreciable sediment input only during aperiodic storm events.
Read full abstract