Tolerance to deacclimation is an important physiological feature in plants in the face of global warming, which is resulting in incidents of increases in winter temperatures. The aim of the work was to explore how disturbances in the signalling and synthesis of brassinosteroids (BR) influence the deacclimation tolerance of barley. One group of mutants and their reference cultivars (Bowman and Delisa) was cold-acclimated, deacclimated and then tested for frost tolerance at − 12 °C. After cold acclimation, the second group of plants was additionally exposed to frost (− 6 °C) and then, deacclimated and tested for frost tolerance at − 12 °C. The deacclimated brassinosteroid mutants were characterised by an increased tolerance to frost, and consequently, had a higher tolerance to deacclimation than their wild-type cultivars. The mechanism of this phenomenon may be partly explained by analysing the hormonal homeostasis in the crowns. For all of the tested plants, a characteristic feature of the response to the deacclimation phase was an increase in the growth-promoting hormones and abscisic acid compared to the cold acclimation phase. The increase was greater in the BR-deficient (BW084) and BR-insensitive (BW312) mutants compared to the Bowman reference cultivar. Mutant 522DK was characterised by a lower accumulation of total cytokinins and gibberellins as well as an enhanced auxin deactivation compared to the Delisa. In the second group, when the plants were exposed to a temperature of − 6 °C before deacclimation, the hormonal homeostasis was further altered in both the mutants and reference cultivars, but all of the mutants had a higher frost tolerance than the wild types.