Abstract South China is famous for its large-scale mineralization genetically related to widespread Mesozoic granites. The Jiulongnao complex is one of the largest intrusions in southern Jiangxi Province, and is closely associated with W-dominated polymetallic mineralization. The complex comprises four intrusive phases (I-IV). Phase I consists of medium- to coarse-grained, biotite granite, whereas medium- to coarse-grained, porphyritic, biotite granite and muscovite-bearing granite comprise Phase II. Phase III is composed of medium- to fine-grained, porphyritic, biotite granite and Phase IV consists of medium- to fine-grained, garnet- and biotite-bearing granite. These intrusive phases have LA-ICP-MS zircon U-Pb ages of 160.9 ± 0.6 Ma, 158.6 ± 0.7 Ma, 157.0 ± 1.5 Ma and 154.1 ± 1.2 Ma, respectively. All of the granites are enriched in Rb, Th, U, Ta and Pb, and significantly depleted in Eu, Ba, Nb, Sr, P and Ti. They have eHf(t) and eNd(t) values ranging from −17.9 to −8.2, and −10.7 to −9.8, respectively, with two-stage Hf model ages of 1.7–2.3 Ga. They are S-type granites derived by partial melting of Paleo-Proterozoic metasedimentary rocks. The four phases have TZr of 746–760 °C, 712–802 °C, 798–810 °C, and 648–731 °C, respectively. Oxygen fugacities of Phases I to III display a decreasing trend but Phase IV has much higher oxygen fugacity in its early stage, which decreased in the late stage. The four phases have different accessory mineral assemblages: Phase I is characterized by an assemblage of zircon, apatite, fergusonite, thorite and uraninite, whereas Phase II is rich in thorite, uraninite, REE-bearing minerals (e.g., monazite, fergusonite and xenotime) and fluorite. Monazite is the main accessory mineral in Phase III, whereas Phase IV contains a wide range of minerals, including thorite, uraninite, Nb-Ta-bearing minerals (e.g., fergusonite and pyrochlore), cassiterite and rutile. These mineral assemblages, together with other geological and geochemical features, suggest that W mineralization was genetically related to Phases I, II and IV, whereas U mineralization was most extensive in Phase II. Sn, Nb and Ta mineralization was associated with the highly fractionated of magmas of Phase IV.
Read full abstract