Estimating whether to treat the rupture risk of small intracranial aneurysms (IAs) with size ≤ 7mm in diameter is difficult but crucial. We aimed to construct and externally validate a convenient machine learning (ML) model for assessing the rupture risk of small IAs. One thousand four patients with small IAs recruited from two hospitals were included in our retrospective research. The patients at hospital 1 were stratified into training (70%) and internal validation set (30%) randomly, and the patients at hospital 2 were used for external validation. We selected predictive features using the least absolute shrinkage and selection operator (LASSO) method and constructed five ML models applying diverse algorithms including random forest classifier (RFC), categorical boosting (CatBoost), support vector machine (SVM) with linear kernel, light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost). The Shapley Additive Explanations (SHAP) analysis provided interpretation for the best ML model. The training, internal, and external validation cohorts included 658, 282, and 64 IAs, respectively. The best performance was presented by SVM as AUC of 0.817 in the internal [95% confidence interval (CI), 0.769-0.866] and 0.893 in the external (95% CI, 0.808-0.979) validation cohorts, which overperformed compared with the PHASES score significantly (all P < 0.001). SHAP analysis showed maximum size, location, and irregular shape were the top three important features to predict rupture. Our SVM model based on readily accessible features presented satisfying ability of discrimination in predicting the rupture IAs with small size. Morphological parameters made important contributions to prediction result.