Real-time safety services rely on the exchange of messages to enhance the operations of connected and automated vehicles (CAVs). These safety messages convey vital information about traffic conditions, enabling drivers to take necessary measures to prevent accidents. The timely and reliable delivery of these messages is essential, necessitating efficient channel access. Vehicular Deterministic Access (VDA) is employed as a channel access scheme with distinct priorities and stringent timing guidelines, particularly for urgent safety warnings. In this paper, we propose a hybrid approach that combines VDA and Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocols, along with a message prioritization algorithm, to ensure efficient and reliable communication of safety messages in vehicular networks. Our approach leverages the strengths of both VDA and CSMA/CA to avoid message collisions; VDA is more efficient under high traffic loads, while CSMA/CA is better suited for low traffic loads. Additionally, the incorporation of the message prioritization algorithm ensures strict deadline guarantees for high-priority messages, such as Decentralized Environmental Notification Messages (DENMs). We evaluate our proposed solution using the Artery simulation framework. Our results show over a 93% delivery rate for DENM exchanges while maintaining low collision probability across various traffic loads. This research provides practical guidance for the development of efficient and reliable communication systems for CAVs. It also offers a detailed analysis of the trade-offs among different access protocols and message prioritization strategies in vehicular networks.