O-fucose, a form of mono-glycosylation on serine and threonine residues of nuclear and cytoplasmic proteins of some parasites, other unicellular eukaryotes, and plants, is understudied because it is difficult to detect owing to its neutral charge and lability during mass spectrometry. Yet the O-fucosyltransferase enzyme (OFT) is required for optimal growth of the agent for toxoplasmosis, Toxoplasma gondii , and an unrelated protist, the social amoeba Dictyostelium discoideum . Furthermore, O-fucosylation is closely related to the analogous process of O-GlcNAcylation of thousands of proteins of animal cells, where it plays a central role in stress and nutritional responses. O-Fuc is currently best detected using Aleuria aurantia lectin (AAL), but in most organisms AAL also recognizes a multitude of proteins in the secretory pathway that are modified with fucose in different ways. By establishing the potential to induce highly specific rabbit antisera that discriminate O-Fuc from all other forms of protein fucosylation, this study expands knowledge about the protist O-fucome and opens a gateway to explore the potential occurrence and roles of this intriguing posttranslational modification in bacteria and other protist pathogens such as Acanthamoeba castellanii .