Measuring edge effects in complex landscapes is often confounded by the presence of different kinds of natural and anthropogenic edges, each of which may act differently on organisms inhabiting habitat patches. In such landscapes, proportions of different habitats surrounding nests within patches often vary and may affect nesting success independently of distance to edges. We developed methods to measure and study the effects of multiple edges and varying habitat composition around nests on the breeding success of the Acadian flycatcher (Empidonax virescens), an understory, open-cup nesting songbird. The Kaskaskia River in Southwestern Illinois was our study area and consists of wide (>1000-m) floodplain corridors embedded in an agricultural matrix with a variety of natural (wide rivers, backwater swamps, and oxbow lakes) and anthropogenic (internal openings, and agricultural) habitats. We also measured vegetation structure around each nest. Nest survival increased with increasing nest concealment, and probabilities of brood parasitism increased with increasing distances from anthropogenic and natural water-related openings surrounding nests. The magnitude of these effects was small, probably because the landscape is saturated with nest predators and brood parasites. These results illustrate the importance of considering both larger landscape context and details of natural and anthropogenic disturbances when studying the effects of habitat fragmentation on wildlife.
Read full abstract