BackgroundThe increasing energy demands stemming from the extensive utilization of portable electronic devices are creating a huge energy deficit between demand and supply. In this scenario, it is not only sufficient to pursue and innovate the new renewable energy sources but also requires an ideal device for energy storage and conversion. MethodsIn this work, activated carbon (AC) was prepared from matured bark of Acacia catechu through a series of steps; pre-carbonization, carbonization, and activation. The AC was synthesized at different temperatures (400–800 °C) under inert atmosphere, using orthophosphoric acid as an activator. As-prepared sample (ACBH) was characterized by well-known characterization techniques. Energy storage capability was assessed in terms of Cyclic voltammetry, Galvanostatic charge-discharge, Electrochemical impedance, and Cyclic stability by three-electrode setup. Significant findingsThe ACBH-8 sample demonstrated superior electrochemical performance compared to other samples. The sample ACBH-8, as Negatrode, exhibited a specific capacitance of 282.4 F g−1 at 0.5 A g−1 and retained 95.4 % cyclic stability under 10,000 cycles. The excellent energy storage performance by green-class negatrode materials from the bio-waste substance empowers commercial applications.
Read full abstract