A single-phase multilevel inverter with a switched-capacitor multilevel (SC-MLI) configuration is developed to provide 13-level output voltages. An improved genetic algorithm (GA) with adaptive mutation and crossover rates is employed to achieve robust harmonic mitigation by avoiding local optima and ensuring optimal performance. The topology introduces an SC-MLI that generates AC output voltage at desired levels using only two capacitors, two asymmetrical DC sources, one diode, and 11 switches. This allows the inverter to use fewer gate drivers and, hence, increases the power density of the converter. A significant challenge in the normal operation of SC-MLI circuits relates to the self-voltage balance of the capacitors, which easily becomes unstable, particularly at low modulation indices. The proposed design addresses this issue without the need for ancillary devices or complex control schemes, ensuring stable self-balanced operation across the entire spectrum of the modulation index. In this context, the harmonic mitigation technique optimized through GA applied in this inverter ensures low harmonic distortion, achieving a total harmonic distortion (THD) of 6.73%, thereby enhancing power quality even at low modulation indices. The performance of this SC-MLI is modeled under various loading scenarios using MATLAB/Simulink® with validation performed through an Opal-RT real-time emulator. Additionally, the inverter’s overall power losses and individual switch losses, along with the efficiency, are analyzed using the simulation tool PLEXIM-PLECS. Efficiency is found to be 96.62%.
Read full abstract