We first study the structure of a special generalized regular semigroup, namely the B-semiabundant semigroup which can be expressed as the join of the pseudo-varieties of finite groups and finite aperiodic groups. In the literature, the weakly B-semiabundant semigroups have recently been thoughtfully investigated and considered by Wang. One easily observes that the class of good B-semiabundant semigroups is a special class of semigroups embraces all abundant (and hence regular) semigroups. In particular, a super B-quasi-Ehresmann semigroup is an analogy of an orthodox semigroup within the class of B-semiabundant semigroups. Thus, the class of super B-quasi-Ehresmann semigroups is obviously a subclass of the class of good B-quasi-Ehresmann semigroups which contains all orthodox semigroups. Thus, the super B-quasi-Ehresmann semigroup behaves similarly as the Clifford subsemigroups within the class of regular semigroups. Consequently, a super B-quasi-Ehresmann semigroup is now recognized as an important generalized regular semigroup. Our aim in this paper is to describe the properties and intrinsic structure of a super B-quasi-Ehresmann semigroup whose band of projections is right regular, right normal, left semiregular, left seminormal, regular, left quasinormal or normal, respectively. Hence, our representation theorem of the super B-quasi-Ehresmann semigroups improves, strengthens and generalizes the well-known “standard representation theorem of an orthodox semigroup” established by He et al. (Commun. Algebra 33:745–761, 2005). Finally, a general representation theorem in the category of Ehresmann semigroups is given.