Abstract

AbstractAbundant semigroups originate from p.p. rings and are generalizations of regular semigroups. The main aim of this paper is to study the primeness and the primitivity of abundant semigroup algebras. We introduce and studyD∗{{\mathcal{D}}}^{\ast }-graphs and Fountain matrices of a semigroup. Based onD∗{{\mathcal{D}}}^{\ast }-graphs and Fountain matrices, we determine when a contracted semigroup algebra of a primitive abundant semigroup is prime (respectively, semiprime, semiprimitive, or primitive). It is well known that for any algebraA{\mathcal{A}}with unity,A{\mathcal{A}}is primitive (prime) if and only if so isMn(A){M}_{n}\left({\mathcal{A}}). Our results can be viewed as some kind of generalizations of such a known result. In addition, it is proved that any contracted semigroup algebra of a locally ample semigroup whose set of idempotents is locally finite (respectively, locally pseudofinite and satisfying the regularity condition) is isomorphic to some contracted semigroup algebra of primitive abundant semigroups. Moreover, we obtain sufficient and necessary conditions for these classes of contracted semigroup algebras to be prime (respectively, semiprime, semiprimitive, or primitive). Finally, the structure of simple contracted semigroup algebras of idempotent-connected abundant semigroups is established. Our results enrich and extend the related results on regular semigroup algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.