The removal of antibiotics in wastewater treatment plants (WWTPs) is generally insufficient. Studies have proved that ammonia-oxidizing bacteria (AOB) are capable of degrading antibiotics through cometabolism. However, the actual operating conditions in WWTPs are generally unfavorable for AOB to fully reach its cometabolic potential. Studies have demonstrated that exogenous N-acyl homoserine lactones (AHLs) can enhance the treatment efficiency of wastewater treatment microorganisms by regulating their quorum sensing system. However, few studies have reported the effect of exogenous AHLs on the cometabolic removal of antibiotics by AOB. In this study, a typical AHL, N-hexanoyl-L-homoserine lactone (C6-HSL), was selected to explore its effects on the cometabolic removal of a typical antibiotic, sulfadiazine (SDZ), by an enriched AOB culture and the microbial responses of the culture during the process. The results showed that the exposure to SDZ (0.1-10mg/L) led to the decrease in ammonia oxidation rate, the concentrations of intracellular adenosine triphosphate and ammonia oxygenase (AMO) and the abundances of amoA gene and AOB, while more extracellular polymeric substances (EPS) were secreted to resist the adverse effects brought by SDZ. With the simultaneous addition of SDZ (1 and 10mg/L) and exogenous C6-HSL (1μM), it was found that C6-HSL significantly enhanced the removal efficiency and rate of SDZ by the enriched AOB culture. By promoting EPS secretion, strengthening energy metabolism, promoting AMO synthesis, increasing AOB and amoA gene abundances and altering microbial community structure, C6-HSL restored the microbial activity and alleviated the pressure on microorganisms induced by SDZ. It is expected that this study could provide a new strategy for enhancing antibiotics removal in wastewater.
Read full abstract