We consider an abstract Cauchy problem for a formally hyperbolic equation with double non-linearity. Under certain conditions on the operators in the equation, we prove its local (in time) solubility and give sufficient conditions for finite-time blow-up of solutions of the corresponding abstract Cauchy problem. The proof uses a modification of a method of Levine. We give examples of Cauchy problems and initial-boundary value problems for concrete non-linear equations of mathematical physics.