In order to enhance the hydrogen absorption performance and poisoning resistance of ZrCo to O2, Pd/ZrCo composite films were prepared by direct current magnetron sputtering. The results show that the initial hydrogen absorption rate of the Pd/ZrCo composite film increased significantly due to the catalytic effect of Pd compared with the ZrCo film. In addition, the hydrogen absorption properties of Pd/ZrCo and ZrCo were tested in poisoned hydrogen mixed with 1000 ppm O2 at 10-300 °C, where the Pd/ZrCo films maintained a better resistance to O2 poisoning below 100 °C. The mechanism of poisoning was investigated jointly by first-principles calculation combined with SEM-EDS elemental mapping tests. It is shown that the poisoned Pd layer maintained the ability to promote the decomposition of H2 into hydrogen atoms and their rapid transfer to ZrCo.