We present experimental evidence of ultra-high energy density plasma states with the keV bulk electron temperatures and near-solid electron densities generated during the interaction of high contrast, relativistically intense laser pulses with planar metallic foils. Experiments were carried out with the Ti:Sapphire laser system where a picosecond pre-pulse was strongly reduced by the conversion of the fundamental laser frequency into 2ω. A complex diagnostics setup was used for evaluation of the electron energy distribution in a wide energy range. The bulk electron temperature and density have been measured using x-ray spectroscopy tools; the temperature of supra-thermal electrons traversing the target was determined from measured bremsstrahlung spectra; run-away electrons were detected using magnet spectrometers. Analysis of the bremsstrahlung spectra and results on measurements of the run-away electrons showed a suppression of the hot electron production in the case of the high laser contrast. Characteristic x-ray radiation has been used for evaluation of the bulk electron temperature and density. The measured Ti line radiation was simulated both in steady-state and transient approaches using the code FLYCHK that accounts for the atomic multi-level population kinetics. The best agreement between the measured and the synthetic spectrum of Ti was achieved at 1.8 keV electron temperature and 2 × 1023 cm−3 electron density. By application of Ti-foils covered with nm-thin Fe-layers, we have demonstrated that the thickness of the created keV hot dense plasma does not exceed 150 nm. Results of the pilot hydro-dynamic simulations that are based on a wide-range two-temperature Equation of States, wide-range description of all transport and optical properties, ionization, electron, and radiative heating, plasma expansion, and Maxwell equations (with a wide-range permittivity) for description of the laser absorption are in excellent agreement with experimental results. According to these simulations, the generation of keV-hot bulk electrons is caused by the collisional mechanism of the laser pulse absorption in plasmas with a near solid step-like electron density profile. The laser energy, first deposited into the nm-thin skin-layer, is then transported into 150 nm depth by the electron heat conductivity. This scenario is opposite to the volumetric character of the energy deposition produced by supra-thermal electrons.