Residual O(2) in a package headspace can be removed by an O(2)-absorbing sachet, which can be harmful if swallowed by the consumer, or by a chemically-active plastic packaging film, which is difficult to recycle. An edible, O(2)-absorbing film would avoid these disadvantages. The objective of our research was to assess the O(2)-scavenging potential of an edible whey protein isolate (WPI) film incorporating ascorbic acid (AA). AA at 0.05, 0.1, or 0.2 M was added to 5% (w/w) heat-denatured WPI film-forming solutions with WPI : glycerol (Gly) ratio of 1: 1.00, 1: 0.80, or 1: 0.67. The pH of solutions was then adjusted to 3.5 (below pK(a1) of AA), to stabilize AA against oxidation, before film casting. The mechanical properties, O(2) permeabilities, and thermal transitions of films were measured. Activation of the O(2)-scavenging function of the AA-incorporated films was accomplished by adjustment of the films to pH ≥ 7. O(2)-scavenging ability of AA-incorporated WPI films was determined by measuring residual O(2) in the headspace of a high-barrier container. Incorporation of AA into WPI film decreased film tensile strength and further reduced O(2) permeability at each WPI : Gly ratio. AA-containing films adjusted to pH ≥ 7 demonstrated O(2) absorption proportional to AA content, consistent with theoretical O(2)-scavenging capacity. Thermal transition measurements indicated that AA was involved in WPI structural modification and decreased the degradation temperature of WPI-based film. The demonstrated O(2)-scavenging function, improved O(2) barrier and acceptable mechanical properties of AA-incorporated films indicate potential commercial usefulness. Ascorbic acid-incorporated whey protein film with oxygen scavenging function can be used to extend shelf lives of a wide variety of oxygen-sensitive products by eliminating headspace oxygen as well as oxygen permeating through the packaging wall over time. Edible oxygen-scavenger film has the advantages of avoiding both accidental consumption and nonrecyclability of conventional oxygen scavenger systems.