The study investigated six sets of ionic liquid (IL) working pairs based on high-temperature vapor-liquid equilibrium data. These sets were modeled using the NRTL activity coefficient model and integrated into a single-stage absorption heat transformer (AHT) for system cycle simulation analysis. A comparison was made with traditional H2O + LiBr working pairs commonly used in AHTs. The study aimed to assess the feasibility of using IL working pairs in high-temperature AHTs to achieve higher output temperatures when dealing with heat sources exceeding 120 °C. Compared to the traditional H2O + LiBr working pair, which has strong COP and ECOP but a limited temperature range, IL pairs offer advantages under various conditions. For instance, H2O + [HMIM][Cl] and H2O + [BMIM][Br] can operate at higher condensation temperatures, providing broader temperature ranges. H2O + [HMIM][Cl] has a wider operational temperature range, suitable for unstable waste heat sources. It also has the highest optimal ECOP value of 0.64 at 197 °C absorption temperature, and shows good cyclic performance, achieving temperature rises of about 78 °C. ILs can maintain stable COPs and circulation ratios over a wide range of absorption temperatures, thus achieving higher temperature rises or meeting the need for higher absorption temperatures. Notably, although the H2O + IL combination exhibits slightly higher exergy loss than the traditional H2O + LiBr pair when comparing exergy losses in the AHT system among different working pairs, its low corrosiveness, lack of crystallization, and wide operating temperature range make these drawbacks insignificant.