Abstract

This study focuses on the potential of a novel cogeneration system which consists of a 5kW proton exchange membrane fuel cell (PEMFC) and an absorption heat transformer (AHT). The dissipation heat resulting from the operation of the PEMFC would be used to feed the absorption heat transformer, which is integrated to a water purification system. Therefore, the products of the proposed cogeneration system are heat, electricity and distilled water. The study includes a simulation for the PEMFC as well as experimental results obtained with an experimental AHT facility. Based on the simulation results, experimental tests were performed in order to estimate the performance parameters of the overall system. This is possible due to the matching in power and temperatures between the outlet conditions of the simulated fuel cell and the inlet requirements of the AHT. Experimental coefficients of performance are reported for the AHT as well as the overall cogeneration efficiency for the integrated system. The results show that experimental values of coefficient of performance of the AHT and the overall cogeneration efficiency, can reach up to 0.256 and 0.571, respectively. This represents an increment in 12.4% of efficiency, compared to the fuel cell efficiency working individually. This study shows that the combined use of AHT systems with a PEMFC is possible and it is a very feasible project to be developed in the Centro de Investigación en Energía (Centre of Energy Research), México.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.