We report the first demonstration of flexible photodetectors, operating at the wavelength window of 1.3 μm, fabricated with InN nanowires (NWs) and graphene on an overhead projector transparency (OHP) sheet. The InN NWs, used as an absorption medium for the device, were formed on a Si substrate and exhibited strong emission with a peak wavelength of 1.3 μm at room temperature. They were randomly and horizontally embedded in the graphene sandwich structure functioned as a carrier channel. The photocurrent and photoresponsivity of the flexible photodetector were found to be 1.17 mA and 0.48 A W-1, respectively, at a voltage of 1 V and a light intensity of 60 mW cm-2 of a xenon lamp. The photocurrent measured when the photodetector was bent under a strain of 3% was 1.15 mA, which corresponds to 98.3% compared to that before bending. Moreover, the photocurrent and photoresponsivity of the flexible photodetector measured after the 200 cyclic-bending tests are comparable to those measured before bending.