Abstract
Underwater imaging often suffers from color cast and contrast degradation due to range-dependent medium absorption and light scattering. Introducing image statistics as prior has been proved to be an effective solution for underwater image enhancement. However, relative to the modal divergence of light propagation and underwater scenery, the existing methods are limited in representing the inherent statistics of underwater images resulting in color artifacts and haze residuals. To address this problem, this article proposes a convolutional neural network (CNN)-based framework to learn hierarchical statistical features related to color cast and contrast degradation and to leverage them for underwater image enhancement. Specifically, a pixel disruption strategy is first proposed to suppress intrinsic colors’ influence and facilitate modeling a unified statistical representation of underwater image. Then, considering the local variation of depth of field, two parallel sub-networks: Color Correction Network (CC-Net) and Contrast Enhancement Network (CE-Net) are presented. The CC-Net and CE-Net can generate pixel-wise color cast and transmission map and achieve spatial-varied color correction and contrast enhancement. Moreover, to address the issue of insufficient training data, an imaging model-based synthesis method that incorporates pixel disruption strategy is presented to generate underwater patches with global degradation consistency. Quantitative and subjective evaluations demonstrate that our proposed method achieves state-of-the-art performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have