ABSTRACTThis study outlines a comprehensive process design utilising glycerol‐steam reforming for an H2‐enriched gas stream, coupled with carbon dioxide removal via a chemical absorption system, followed by a techno‐economic analysis. The Aspen Plus economic analyser assesses the developed model, incorporating simulation results and literature data. Initially, the CO2 capture unit was planned with a standalone absorber and stripper, later integrated for solvent makeup calculation. Findings reveal that as catalyst loading increased from 5 to 50 kg, glycerol conversion and product molar fraction improved. For a targeted H2 production of 10 t/day, optimal reactor dimensions are 3.2 m diameter and 30 m length, corresponding to a reactant flow of 105 t/day and a 2.52 MW heat duty at stoichiometry conditions. To capture 95% CO2 from the reformed product stream, absorber and stripper packing heights of 12 and 7 m, respectively, with column diameters of 1.25 and 2.71 m are necessary. The production cost of H2 is determined to be $3.8 per kg, as revealed by the techno‐economic analysis. Calculated values for net present value, discounted payback period, and internal rate of return stand at $30 million, 5 years, and 25.0%, respectively. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.
Read full abstract