Meloidogyne chitwoodi is a major problem for potato production in the Pacific Northwest of the USA. In spite of long-term breeding efforts no commercial potato cultivars with resistance to M. chitwoodi exist to date. The resistance gene against M. chitwoodi has been introgressed from Solanum bulbocastanum into cultivated potato (S. tuberosum), but M. chitwoodi pathotypes are able to overcome this resistance. In this study, an RNA interference (RNAi) transgene targeting the M. chitwoodi effector gene Mc16D10L was introduced into potato cvs Russet Burbank and Désirée, and the advanced breeding line PA99N82-4, which carries the gene. Stable transgenic lines were generated for glasshouse infection assays. At 35 days after inoculation (DAI) with M. chitwoodi race 1 the number of egg masses (g root)−1 formed on RNAi lines of cvs Russet Burbank and Désirée was reduced significantly by up to 68% compared to empty vector control plants. At 55 DAI, the number of eggs was reduced significantly by up to 65%. In addition, RNAi of Mc16D10L significantly reduced the development of egg masses and eggs formed by the resistance-breaking M. chitwoodi pathotype Roza on PA99N82-4 by up to 47 and 44%, respectively. Importantly, the plant-mediated silencing effect of Mc16D10L was transmitted to M. chitwoodi offspring and significantly reduced pathogenicity in the absence of selection pressure on empty vector control plants. This finding suggests that the RNAi effect is stable and nematode infection decreases regardless of the genotype of the host once the RNAi process has been initiated in the nematode through a transgenic plant. In summary, plant-mediated down-regulation of effector gene Mc16D10L provides a promising new tool for molecular breeding against M. chitwoodi.
Read full abstract