Gastrointestinal helminth infection, particularly by Haemonchus contortus, poses significant challenges to sheep farming worldwide. While anthelmintic drugs have been traditional control measures, the emergence of resistance calls for alternative strategies. Understanding the interaction between parasites, host, and their microbiome is crucial for management of helminth infection. This study intricately explores the interactions between microbial communities in Kashmir Merino sheep infected with H. contortus, to understand the complex interplay between host, parasite, and their microbiome. Sheep abomasal contents and H. contortus were collected from infected and control groups, processed for DNA extraction, and subjected to metagenomic sequencing of the 16 S rRNA gene. Downstream analysis unveils distinct microbial patterns, where Proteobacteria were dominant in H. contortus, while Bacteroidota and Firmicutes prevailed in the sheep abomasum. The revelation of unique genera and shifts in diversity indices underscored helminth-induced disruptions in the host. Beta diversity analysis further showed significant variations in bacterial profiles, providing insights into the intricate host, parasite, and microbiome dynamics. Additionally, this study elucidated the presence of pathogenic bacteria within H. contortus, accentuating their potential role in exacerbating sheep health issues. This finding underscores the complexity of the host-parasite-microbiome interaction showing helminth-induced microbiome alterations of the host.