Disruption of cyclin D-dependent kinases (CDKs), particularly CDK4/6, drives cancer cell proliferation via abnormal protein phosphorylation. This open-label, single-arm, phase Ib/II trial evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, combined with paclitaxel against CDK4/6-activated tumors. Patients with locally advanced or metastatic solid tumors with CDK4/6 pathway aberrations were included. Based on phase Ib, the recommended phase II doses were determined as abemaciclib 100 mg twice daily and paclitaxel 70 mg/m2 on days 1, 8, and 15, over 4-week-long cycles. The primary endpoint for phase II was the overall response rate (ORR). The secondary endpoints included the clinical benefit rate (CBR), progression-free survival (PFS), overall survival (OS), and safety. Tissue-based next-generation sequencing and exploratory circulating tumor DNA analyses were carried out. Between February 2021 and April 2022, 30 patients received abemaciclib/paclitaxel (median follow-up: 15.7 months), and 27 were included in the efficacy analysis. CDK4/6 amplification (50%) and CCND1/3 amplification (20%) were common activating mutations. The ORR was 7.4%, with two partial responses, and the CBR was 66.7% (18/27 patients). The median OS and PFS were 9.9 months [95% confidence interval (CI) 5.7-14.0 months] and 3.5 months (95% CI 2.6-4.3 months), respectively. Grade 3 adverse events (50%, 21 events) were mainly hematologic. Genetic analysis revealed a 'poor genetic status' subgroup characterized by mutations in key signaling pathways (RAS, Wnt, PI3K, and NOTCH) and/or CCNE amplification, correlating with poorer PFS. Abemaciclib and paclitaxel showed moderate clinical benefits for CDK4/6-activated tumors. We identified a poor genetic group characterized by bypass signaling pathway activation and/or CCNE amplification, which negatively affected treatment response and survival. Future studies with homogeneous patient groups are required to validate these findings.
Read full abstract