A new basis has been found for the theory of self-organization of transport avalanches and jet zonal flows in L-mode tokamak plasma, the so-called "plasma staircase" [Dif-Pradalier et al., Phys. Rev. E 82, 025401(R) (2010)PLEEE81539-375510.1103/PhysRevE.82.025401]. The jet zonal flows are considered as a wave packet of coupled nonlinear oscillators characterized by a complex time- and wave-number-dependent wave function; in a mean-field approximation this function is argued to obey a discrete nonlinear Schrödinger equation with subquadratic power nonlinearity. It is shown that the subquadratic power leads directly to a white Lévy noise, and to a Lévy fractional Fokker-Planck equation for radial transport of test particles (via wave-particle interactions). In a self-consistent description the avalanches, which are driven by the white Lévy noise, interact with the jet zonal flows, which form a system of semipermeable barriers to radial transport. We argue that the plasma staircase saturates at a state of marginal stability, in whose vicinity the avalanches undergo an ever-pursuing localization-delocalization transition. At the transition point, the event-size distribution of the avalanches is found to be a power law w_{τ}(Δn)∼Δn^{-τ}, with the drop-off exponent τ=(sqrt[17]+1)/2≃2.56. This value is an exact result of the self-consistent model. The edge behavior bears signatures enabling to associate it with the dynamics of a self-organized critical (SOC) state. At the same time the critical exponents, pertaining to this state, are found to be inconsistent with classic models of avalanche transport based on sand piles and their generalizations, suggesting that the coupled avalanche-jet zonal flow system operates on different organizing principles. The results obtained have been validated in a numerical simulation of the plasma staircase using flux-driven gyrokinetic code for L-mode Tore-Supra plasma.