Cascade feedback linearization provides geometric insights on explicit integrability of nonlinear control systems with symmetry. A central piece of the theory requires that the partial contact curve reduction of the contact sub-connection be static feedback linearizable. This work establishes new necessary conditions on the equations of Lie type - in the abelian case - that arise in a contact sub-connection with the desired static feedback linearizability property via families of codimension one partial contact curves. Furthermore, an explicit class of contact sub-connections admitting static feedback linearizable contact curve reductions is presented, hinting at a possible classification of all such contact sub-connections. Key tools in proving, and stating, the main results of this paper are truncated versions of the total derivative and Euler operators. Additionally, the Battilotti-Califano system with three inputs is used as a clarifying example of both cascade feedback linearization and the new necessary conditions.
Read full abstract