Multidrug resistance-associated protein 7 (MRP7, ABCC10) is a C subfamily member of the ATP-binding cassette (ABC) superfamily. MRP7 is a lipophilic anion transporter that pumps endogenous and xenobiotic substrates from the cytoplasm to the extracellular milieu. Here, we cloned and characterized CsMRP7 as a novel ABC transporter from the Chinese liver fluke, Clonorchis sinensis. Full-length cDNA of CsMRP7 was 5174nt, encoded 1636 amino acids (aa), and harbored a 147-bp 5'-untranslated region (5'-UTR) and 116-bp 3'-UTR. Phylogenetic analysis confirmed that CsMRP7 was closer to the ABCC subfamily than the ABCB subfamily. Tertiary structures of the N-terminal region (1-322 aa) and core region (323-1621 aa) of CsMRP7 were generated by homology modeling using glucagon receptor (PDB ID: 5ee7_A) and P-glycoprotein (PDB ID: 4f4c_A) as templates, respectively. CsMRP7 nucleotide-binding domain 2 (NBD2) was conserved more than NBD1, which was the sites of ATP binding and hydrolysis. Like typical long MRPs, CsMRP7 has an additional membrane-spanning domain 0 (MSD0) and cytoplasmic loop, along with a common structural fold consisting of MSD1-NBD1-MSD2-NBD2 as a single polypeptide assembly. MSD0, MSD1, and MSD2 consisted of TM1-7, TM8-13, and TM14-19, respectively. The CsMRP7 transcript was more abundant in the metacercariae than in the adult worms. Truncated NBD1 (39kDa) and NBD2 (44kDa) were produced in bacteria and mouse immune sera were raised. CsMRP7 was localized in the apical side of the intestinal epithelium, sperm in the testes and seminal receptacle, receptacle membrane, and mesenchymal tissue around intestine in the adult worm. These results provide molecular information and insights into structural and functional characteristics of CsMRP7 and homologs of flukes.
Read full abstract