Long non-coding RNAs (lncRNAs) are closely related to the occurrence and development of tumors and have gradually become a hot topic in the field of glioma research in recent years. In this study, the role of lung cancer associated transcript 1 (lncRNA LUCAT 1) in glioma occurrence and development, as well as its possible regulatory mechanism, was explored. We utilized the gene chip technology in the preliminary experiment, and based on the experiment results, selected LUCAT1(NONHSAT102745), which was significantly upregulated in glioma, and ATP-binding cassette Subfamily B member l (ABCB1), which was significantly down-regulated in co-expression analysis, for study. Next, the expression of LUCAT1 and ABCB1 in cells and tissues was immediately evaluated. Subsequently, the cells were transfected with scrambled siRNA, LUCAT1-siRNA/ABCB 1-siRNA, or overexpressed LUCAT1/ABCB1 plasmid + RAS signaling pathway inhibitor-farnesylthiosalicylic acid (FTS). By comparing with the normal combination negative control group, the cell proliferation and invasion ability were evaluated. Finally, subcutaneous tumor formation experiments in the nude mice confirmed the association between LUCAT1 and ABCB1 and RAS signaling pathways. The expression of LUCAT 1 was up-regulated with an increase in WHO grade, and the lncRNA-mRNA co-expression analysis showed that the expression of ABCB1 was low. LUCAT 1 gene knockout reduced the mRNA and protein levels of Ras signaling pathway related factors (Ras, Raf-1, p-AKT, and p-ERK) as regulating ABCB1 expression and inhibiting the ability of tumor in proliferation and invasion no matter in vitro or in vivo. For overexpressing of LUCAT 1, the opposite was true. After we knocked out ABCB1, the LUCAT1 expression was reversely regulated while the level of RAS signaling pathway related factors increased, and the ability of tumors in proliferation and invasion was enhanced. The abnormal LUCAT1 expression affected the biological behaviors of glioma cells, such as proliferation, invasion, etc. by regulating ABCB1 and promoting the activation of the RAS signaling pathway. This provided a new drug target and therapeutic approach for gene therapy of glioma, which is expected to significantly improve the prognosis of relevant patients.
Read full abstract