Simple SummaryAn increasing number of studies have shown that the PCV3 virus causes signs and symptoms similar to PDNS in pigs, and since first being identified in the United States, it has caused reproductive failure in pigs. Studies have shown that it has spread worldwide, especially in China. However, to date, there are only a few reports of PCV3 detection and sequence variation, and limited information is known about its distribution in China’s major swine-producing regions. This study examined the prevalence of PCV3 in China and its evolutionary relationship. A high level of PCV3 infection has been found in serum samples, and it has been found that PCV3 infection has a widespread distribution among Chinese pig herds. The ORF2 genes of the strains were analyzed and compared with other PCV3 strains, which were downloaded from the NCBI. Our phylogenetic analysis indicated a close relationship with the strains previously described in pigs, and additional analysis revealed that all isolates obtained in this study could be divided into two sub-clades: 3a and 3b. Overall, this study showed that PCV3 prevalence in China is high and there is a lot of genetic divergence among the strains, which may pose a threat to the porcine industry.Porcine circovirus 3 (PCV3) is an emerging virus, causing substantial economic losses in pig populations, that was first detected in 2016. Furthermore, the virus has already been reported in Europe, the Americas, and Asia, including China, indicating that the virus has spread worldwide. However, the molecular epidemiology of PCV3 still needs further study. To investigate PCV3 epidemiological characteristics in China, 2707 serum samples of pigs were randomly collected from 17 provinces in China between September 2018 and March 2022 and analyzed via PCR assays. The study showed that PCV3 infection was prevalent in the overall population with 31.07% (841/2707) and 100.0% (17/17) at sample and province levels, respectively, though the positivity rate of PCV3 varied from 7.41 to 70.0% in different provinces, suggesting that PCV3 infection has a widespread distribution in China. We selected 22 serum samples from different regions that had high levels of viral DNA for amplification and sequenced their ORF2 (Cap) gene. According to the phylogenetic analysis, all isolates in the current study could be grouped into two separate subclades, with 15 strains belonging to clade 3a and 7 strains belonging to clade 3b, indicating that PCV3a and PCV3b were the predominant subtypes in the regions of China studied. Meanwhile, additional analysis revealed that the capsid gene sequences identified in this study displayed 97.46~99.8% nucleotide (nt) and 97.06~100% amino acid (aa) sequence similarity with other PCV3 available reference strains, respectively. In general, our studies provide important insights for understanding the prevalence and evolution of PCV3 in China and will guide future efforts to develop measures for preventing and controlling the disease.