α: 7 nicotinic acetylcholine receptors (nAChRs) expressed in the nervous and immune systems have been suggested to play important roles in the control of inflammation. However, the lack of antagonist tools specifically inhibiting α7 nAChR impedes the validation of the channel as therapeutic target. To discover a selective α7 antagonist, we started a pharmacophore-based virtual screening and identified a piperidine-spirooxadiazole derivative T761-0184 that acts as a α7 antagonist. A series of novel piperidine-spirooxadiazole derivatives were subsequently synthesized and evaluated using two-electrode voltage clamp (TEVC) assay in Xenopus oocytes. Lead compounds from two series inhibited α7 with their IC50 values ranging from 3.3μM to 13.7μM. Compound B10 exhibited α7 selectivity over other α4β2 and α3β4 nAChR subtypes. The analysis of structure-activity relationship (SAR) provides valuable insights for further development of selective α7 nAChR antagonists.