The southern Great Xing’an Range is located in the eastern Central Asian Orogenic Belt, where voluminous igneous rocks developed during the Late Mesozoic period. The east slope of the southern Great Xing’an Range has been the topic of numerous debates on the level of influence of the Mongol-Okhotsk and the Paleo-Pacific regimes in the Late Mesozoic period. Therefore, this area is a suitable region in which to study the temporal changes in magma sources and tectono-magmatic evolution. In this paper, whole-rock geochemical data, zircon U-Pb geochronology, and zircon Hf isotope studies were carried out on the granitoids in the east slope area of the southern Great Xing’an Range. LA-ICP-MS zircon U-Pb dating revealed the ages of four granitoid samples: 135.0 ± 0.6 Ma, 130.7 ± 1.4 Ma, 130.4 ± 1.0 Ma, and 127.6 ± 0.8 Ma, respectively. The Hf isotope values 176Hf/177Hf = 0.282751–0.283015, εHf (t) = +2.0~+11.5, and T2DM = 583~1442 Ma suggest that the magma was generated by partial melting of Meso- and Neoproterozoic accreted and thickened low crust. The whole-rock geochemical data implied that these granitoids are A-type granite and their formation is closely linked to the subduction of the Paleo-Pacific Ocean plate. These geochemical, isotopic, and geochronological data suggest that the Early Cretaceous magmatism in the east slope area of the southern Great Xing’an Range formed in an extensional back-arc tectonic setting associated with the slab roll-back of the Paleo-Pacific plate subduction.
Read full abstract