A group contribution (GC) method for estimating pure compound parameters for the molecular-based perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EoS) is proposed in a previous work [A. Tihic, G.M. Kontogeorgis, N. von Solms, M.L. Michelsen, L. Constantinou, Ind. Eng. Chem. Res. 47 (2008) 5092–5101]. In this paper, an investigation of the predictive capability of the GC sPC-SAFT EoS through comparison of the method’s predictions for compounds with high molecular weights and several selected binary mixtures of industrial significance with experimental data such as thiols, sulphides and polynuclear aromatics is presented. Additionally, predictions of activity coefficient at infinite dilution for athermal systems are compared with the results using existing activity coefficient models. The results show that calculated pure compound parameters using the proposed GC method allow satisfactory representation of experimental data of investigated systems with the sPC-SAFT EoS. Moreover, the variety of functional groups in the available GC scheme ensures broad applications of the GC sPC-SAFT EoS.