Alpha-synuclein (αSyn) forms pathologic aggregates in Parkinson's disease (PD) and is implicated in mechanisms underlying neurodegeneration. While pathologic αSyn has been extensively studied, there is currently no method to evaluate αSyn within the brains of living patients. Patients with PD are often treated with deep brain stimulation (DBS) surgery in which surgical instruments are in direct contact with neuronal tissue; herein, we describe a method by which tissue is purified from DBS surgical instruments in PD and essential tremor (ET) patients and demonstrate that αSyn is robustly detected. 24 patients undergoing DBS surgery for PD (17 patients) or ET (7 patients) were enrolled; from patient samples, 81.2 ± 44.8 μg protein (n=15) is able to be purified, with immunoblot assays specific for αSyn reactive in all tested samples. Light microscopy revealed axons and capillaries as the primary components of purified tissue (n=3). Further analysis was conducted using western blot, demonstrating that truncated αSyn (1-125 αSyn) was significantly increased in PD (n=5) compared to ET (n=3), in which αSyn misfolding is not expected (0.64 ± 0.25 vs. 0.25 ± 0.12, P = 0.046), thus showing that pathologic αSyn can be reliably purified from living PD patients with this method.
Read full abstract