This project is conceived to reveal the role of lidocaine in the process of Alzheimer's disease (AD) and its possible downstream targets. After the employment of AD cell model in mice hippocampal neuronal HT-22 cells in the presence of amyloid-β1-42 (Aβ1-42), Cell Counting Kit-8 method investigated cell viability. Oxidative damage was assayed based on a dichloro-dihydro-fluorescein diacetate fluorescent probe and commercially available kits. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide fluorescent probe estimated mitochondrial function. Terminal-deoxynucleotidyl transferase mediated nick end labeling, western blotting, and immunofluorescence appraised the apoptotic level. Western blot also ascertained the alternations of nerve growth factors (NGF)-protein kinase B (Akt) pathway-related proteins. Aβ1-42 concentration dependently triggered the viability loss, oxidative damage, and apoptosis in HT-22 cells. Lidocaine promoted the viability and reduced the mitochondrial impairment and mitochondria-dependent apoptosis in Aβ1-42-treated HT-22 cells in a concentration-dependent manner. Besides, lidocaine activated the NGF-Akt pathway and NGF absence blocked NGF-Akt pathway, aggravated mitochondrial dysfunction as well as mitochondria-dependent apoptosis in lidocaine-administrated HT-22 cells in response to Aβ1-42. Altogether, these observations concluded that lidocaine might stimulate NGF-Akt pathway to confer protection against mitochondrial impairment and apoptosis in Aβ1-42-mediated cellular model of AD.