Excess aluminum (Al) ions and phosphorus (P) deficiency are the key factors that limit plant growth in acid soils. Secretion of organic acids (OA) from roots has been proposed as an Al-resistance mechanism. Nonetheless, the correlation between Al resistance and this mechanism has not been tested beyond a very small number of Al-resistant and Al-sensitive genotypes. To elucidate the mechanisms responsible for plant adaptability to acid soils, we studied the secretion of OA from roots of Stylosanthes in response to high-Al and low-P stresses using six different genotypes. Relative root inhibition by 50 µM Al ranged from 25–71% and differed significantly among six Stylosanthes genotypes. Al treatment induced the secretion of citrate from the roots of Stylosanthes seedling in a dose- and time-dependent manner. Moreover, the secretion rate was significantly higher in the Al-resistant genotype. On the other hand, inhibition of Al-induced citrate secretion by phenylisothiocyanate or 9-anthracenecarboxylic acid resulted in an increase in Al content in Stylosanthes root apices. P deficiency also induced citrate secretion from Stylosanthes seedling roots. Furthermore, citrate secretion was much more robust with exposure to both excess-Al and P-deficiency stresses than under either stress alone. Unlike Al-induced citrate secretion, which was rapid, low-P-induced secretion was a slow process, with significant increases in secretion only becoming evident after 6 d of treatment with free phosphate. The lag between treatment with Al and citrate secretion was approximately 4 h. These results suggest that the secretion of citrate is a mechanism for resistance to both excess-Al and low-P stresses in Stylosanthes.
Read full abstract