This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o−1. Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (Tc), as an index of cell volume, whereas 86Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H2O) evoked a rapid increase in cell volume by 35%. Subsequently, the regulatory volume decrease (RVD) restored cell volume almost completely (to 94% of the isosmotic value). The basolateral 86Rb efflux markedly increased during the hyposmotic shock, from 0.50 ± 0.03 min−1 to a peak value of 6.32 ± 0.07 min−1, while apical 86Rb efflux was negligible. Channel blockers, such as GdCl3 (0.5 mM), quinine (0.5 mM) and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB, 100 μM), abolished the RVD. The protein tyrosine kinase inhibitors tyrphostin 23 (100 μM) and genistein (150 μM) attenuated the RVD. All agents decreased variably the hyposmosis-induced elevation in 86Rb efflux, whereas NPPB induced a complete block, suggesting a link between basolateral K+ and Cl−1 efflux. Forskolin-mediated activation of adenylyl cyclase stimulated the RVD with a concomitant increase in basolateral 86Rb efflux. These data suggest that the basolateral extrusion of K+ and Cl−1 from 16HBE14o−1 cells in response to cell swelling determines RVD efficiency.
Read full abstract