Chelonid fibropapillomatosis-associated herpesvirus (CFPHV) is an alphaherpesvirus believed to cause marine turtle fibropapillomatosis (FP). A serodiagnostic assay was developed for monitoring sea turtle populations for CFPHV exposure. CFPHV glycoprotein H (gH) expressed in recombinant baculovirus was used in an enzyme-linked immunosorbent assay (ELISA) to detect virus-specific 7S turtle antibodies. Using captive-reared green turtles (Chelonia mydas) with no history of virus exposure as "known negatives" and others with experimentally induced FP as "known positives," the assay had 100% specificity but low sensitivity, as seroconversion was detected in only half of the turtles bearing experimentally induced tumors. Antibodies were detected only in samples collected after cutaneous fibropapillomas appeared, consistent with observations that tumors are significant sites of virion production and antigen expression and the possibility that prolonged/repeated virus shedding may be required for adequate stimulation of 7S antibody responses to gH. Natural routes of infection, however, may produce higher seroconversion rates. High gH antibody seroprevalences ( approximately 80%) were found among wild green turtles in three Florida localities with different FP prevalences, including one site with no history of FP. In addition, all eight loggerhead turtles (Caretta caretta) tested were seropositive despite FP being uncommon in this species. The possibility that CFPHV infection may be common relative to disease suggests roles for environmental and host factors as modulators of disease expression. Alternatively, the possibility of other antigenically similar herpesviruses present in wild populations cannot be excluded, although antibody cross-reactivity with the lung/eye/trachea disease-associated herpesvirus was ruled out in this study.