Research subject. Mineral assemblages of sulfides from massive and disseminated sulfide nickel-copper-platinum-group element (Ni-Cu-PGE) and low-sulfide PGE ores of the Noril’sk Province, which hosts the richest complex deposits of platinum-group metals, nickel, and copper. Aim. In order to identify sources of ore material and explore new forecasting approaches for Ni-Cu-PGE deposits, we study the Cu- and Zn isotopic compositions of sulfides from economic Kharaelakh and Noril’sk-1 intrusions containing unique and large sulphide Ni-Cu-PGE deposits (Oktyabr’sk and Noril’sk-1, respectively), subeconmic Zub-Marksheider and Vologochan intrusions containing small- to medium-size Ni-Cu-PGE deposits, and non-economic Nizhny Talnakh and Nizhny Noril’sk intrusions containing low grade disseminated Ni-Cu mineralization. Results. The analyzed samples are characterized by sulfide mineral assemblages, which contain mainly chalcopyrite, pyrrhotite, pentlandite, troilite, cubanite, and galena. Sulfide Ni-Cu-PGE ores of the Oktyabr’sk and Noril’sk-1 deposits, associated with economic intrusions (i.e., Kharaelakh and Noril’sk-1), demonstrate distinct δ65Cu values from –2.42 to –1.40‰ and from –0.33 to 0.60‰, respectively, which differ from the δ65Cu values for sulfides from other Ni-Cu-PGE deposits and ore occurrences of the Noril’sk Province (data comprise 36 analyses). We note that the Cu-isotopic composition for sulfide minerals of massive and disseminated ores from the Kharaelakh intrusion has similar “isotope-light” characteristics. The most pronounced shift towards “isotope-heavy” copper was found in the horizon of low-sulfide PGE ores of the Noril’sk-1 intrusion (δ65Cu = 0.51–0.60‰). The isotopic composition of Zn (δ66Zn) for the studied sulfide samples from economic, subeconomic, and non-economic intrusions, with the exception of one sample (0.73 ± 0.14‰), is characterized by similar “isotope-light” values (from –0.65 to –0.03‰). Conclusions. The revealed variations in the Cu- and Zn-isotopic composition in the studied sulfide assemblages from all types of ores reflect their primary characteristics; however, for the unique Oktyabr’sk Ni-Cu-PGE deposit, characterized by the most “isotopically light” composition of copper (δ65Cu = –1.9 ± 0.34‰), the possibility of assimilation of an external source of Cu during the formation of sulfide Ni-Cu-PGE ores cannot be excluded. The combined use of Cu and Zn isotopic parameters proved to be a weakly informative predictive indicator for the detection of high-grade sulfide ores, primarily due to the similarity of the Zn isotopic composition of the ore material in all investigated intrusions of the Noril’sk Province.