This paper presents the design, low-temperature co-fired ceramics (LTCC) fabrication, and full experimental verification of novel dielectric flat lens antennas for future high data rate 5G wireless communication systems in the 60 GHz band. We introduce and practically completely evaluate and compare the performance of three different inhomogeneous gradient-index dielectric lenses with the effective parameters circularly and cylindrically distributed. These lenses, despite their planar profile antenna configuration, allow full 2-D beam scanning of high-gain radiation beams. A time-domain spectroscopy system is used to practically evaluate the permittivity profile achieved with the LTCC manufacturing process, obtaining very good results to confirm the viability of fabricating inhomogeneous flat lenses in a mass production technology. Then, the lenses performance is evaluated in terms of radiation pattern parameters, maximum gain, beam scanning, bandwidth performance, efficiencies, and impedance matching in the whole frequency band of interest. Finally, the performance of the three lenses is also experimentally evaluated and compared to a single omni-directional antenna and to a ten-element uniform linear array of omni-directional antennas in real 60 GHz wireless personal area network indoor line-of-sight (LOS) and obstructed-LOS environments, obtaining interesting and promising remarkable results in terms of measured received power and root-mean-square delay spread. At the end of this paper, an innovative switched-beam antenna array concept based on the presented cylindrically distributed effective parameters lens is also introduced and completely evaluated, confirming the potential applicability of the proposed antenna solution for future 5G wireless millimeter-wave communication system.
Read full abstract