5-HT binding sites of the 5-HT1 type are heterogeneous and appear to comprise several subtypes (5-HT1A, 5-HT1B and 5-HT1C); their physiological role is as yet unclear. The stimulation of adenylate cyclase induced by 5-HT has been investigated in membrane fractions prepared from rat brain cortex. Enzymatic activity was determined by measuring cAMP production with an HPLC technique. It was shown that 5-HT stimulates adenylate cyclase activity with 2 activation constants (Kact): one shows a high apparent affinity (Kact = 0.8 nM) and the other a lower apparent affinity (Kact = 0.30 microM). The latter activity, induced by micromolar concentrations of 5-HT, was inhibited by spiperone at concentrations that block 5-HT1A binding. 5-Methoxytryptamine, bufotenin, and LSD also had a stimulatory biphasic effect on adenylate cyclase activity, whereas trifluoromethylphenylpiperazine, 5-carboxyamidotryptamine, 8-hydroxy-(2-di-n-propylamino)tetralin, RU 24969 had a monophasic effect. Enzyme activation by drugs acting in the micromolar range was inhibited by spiperone (1 microM), suggesting a link between this activation and 5-HT1A sites. On the other hand, the high-affinity activation of the enzyme induced by 5-HT, 5-methoxytryptamine, bufotenin, LSD, and the activation induced by TFMPP were not inhibited by spiperone (1 microM), by propranolol (3 microM), or by mesulergine (0.1 microM), which selectively block 5-HT1A, 5-HT1B, and 5-HT1C sites. Inhibition was produced by dihydroergotamine, methysergide, cinanserin, and mianserin, but not by naloxone, phenoxybenzamine, and phentolamine. Therefore, these activations seem related to 5-HT1 receptors but not to 5-HT1A, 5-HT1B, or 5-HT1C sites. Accordingly, binding of [3H]5-HT to 5-HT1-like sites was examined in the presence of spiperone (1 microM) and propranolol (3 microM); in these conditions, a high-affinity site (KD = 3.4 nM) was indeed revealed. The relative potencies of a series of drugs that stimulate or inhibit the activation of the adenylate cyclase with a high affinity and their ability to inhibit this binding of [3H]5-HT showed a positive correlation, strongly suggesting a direct relation between this recognition site for 5-HT and the production of a second messenger (cAMP). Moreover, this potential receptor is shown to be heterogeneously distributed within the brain, and was localized postsynaptically at serotonergic synapses.
Read full abstract