Antennas for future communication systems are required to be highly directive and steerable to compensate for the high path loss in the millimeter-wave band. In this work, we propose a linear array of modulated geodesic Luneburg lens (the so-called water drop lens) antennas operating at 56–62 GHz. The lens array antenna features 2-D beam scanning with low structural complexity. The lenses are fully metallic and implemented in parallel plate waveguides (PPWs), meaning that they are highly efficient. Each lens is fed with 13 rectangular waveguides surrounded by glide-symmetric holes to suppress leakage. The lenses provide <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathrm{110}^{\circ} $ </tex-math></inline-formula> beam coverage in the H-plane with scan losses below 1 dB. In order to scan in the E-plane, we use a feeding network based on a 1:4 power divider and three phase shifters. In this configuration, the array can scan <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathrm{60}^{\circ} $ </tex-math></inline-formula> in the E-plane, albeit with higher scanning losses than in the H-plane. The lens array is manufactured and a good agreement between simulated and experimental results is obtained.
Read full abstract