The aim of the study was to compare the physicochemical and sensory characteristics of fermented, cured sausages made from equivalent muscle groups of beef, pork, and sheepmeat. The last has no commercial examples and represents an unexploited opportunity. Using seven replicates of shoulder meat and subcutaneous fat, sausages were made with 64%, 29%, 4%, 2%, 0.2%, and 0.01% of lean meat, fat, NaCl, glucose, sodium pyrophosphate, and lactic culture, respectively. Following anaerobic fermentation (96 h, 30°C), there were no significant differences between the species in mean texture (hardness, springiness, adhesiveness, cohesiveness) and pH, and only minor differences were seen in color. However, although not consumer tested, it is argued that consumers would be able to pick a texture difference due to different fat melting point ranges, highest for sheepmeat. This work was followed by a sensory experiment to find out if characteristic sheepmeat flavors could be suppressed to appeal to unhabituated consumers. To simulate a very strongly characteristic sheepmeat, beef sausage mixtures (above) were spiked, or not, with 4-methyloctanoic, 4-methylnonanoic acid, and skatole (5.0, 0.35, and 0.08 mg kg−1, respectively). Sodium nitrite (at 0.1 g kg−1) and a garlic/rosemary flavor were variably added to create a 23 factorial design. In a randomized design, 60 consumers found that spiked sheepmeat flavors caused an overall significant decrease in mean liking on a 1–9 scale (5.83 vs. 5.35,P = 0.003), but this was completely negated by the garlic/rosemary addition (5.18 vs. 6.00,P < 0.001). Nitrite had no effect on liking (5.61 vs. 5.58,P = 0.82), although nitrite might be included in commercial examples to minimize fat oxidation and suppress growth of clostridia. Thus, sheepmeat flavors could be suppressed to appeal to unhabituated consumers. Commercial examples could thus be made for these consumers, but the mandatory use of the name “mutton” in some markets would adversely affect prospects.
Read full abstract