Abstract

The objective of this study was to identify candidate genes via which Allium mongolicum Regel ethanol extract (AME) affects the synthesis of branched-chain fatty acids (BCFAs) related to mutton flavor by transcriptome analysis in the lamb liver. Thirty male Small-tailed Han sheep (3 mo old; 33.6 ± 1.2 kg) were randomly divided into two groups and fed for 75 d with a basal diet containing no AME (CON, control group) or 2.8 g·lamb−1·d−1 AME (AME group). Twelve sheep, CON (n = 6) and AME (n = 6), were selected for slaughter at the end of the trial period, and liver samples were subsequently collected. There was no difference in 4-ethyloctanoic acid content among treatments. The 4-methyloctanoic acid and 4-methylnonanoic acid levels were significantly lower in the AME group than in the CON group (P < 0.05). Furthermore, 461 differentially expressed genes (DEGs) were identified between the CON and AME groups, of which 182 were upregulated and 279 were downregulated in the AME group. The DEGs were enriched in three pathways, namely, glutathione metabolism, ECM–receptor interaction, and steroid hormone biosynthesis, as determined by the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Finally, CYP2B6, ACOT12, THEM4, ACSF2, LPIN1, and ADCY4 were identified as candidate genes that might be involved in regulating the BCFAs synthesis in the sheep liver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call