The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150ng/L. Only the gene targets sul1, tetM and the class 1 integron-integrase gene (intl1) were detected in the groundwater. The microalgae-biofilter treatment system effectively removed 15%-98% of nitrates, depending on the season, and consistently eliminated over 90% of ABs and pesticides year-round. Among the components of the treatment system, the microalgal system was the most effective at removing ABs and pesticides. However, the cork-wood biofilter showed superior performance in reducing the bacterial load in groundwater, achieving more than a 1-log reduction in the absolute abundance of genes such as sul1 and intl1. The accumulation of ABs and pesticides in microalgae biomass was minimal or undetectable (<20ng/g of fresh weight). Overall, our results indicate that the microalgae-biofilter treatment plant is an effective solution for significantly reducing nitrates, antibiotics, and pesticides from groundwaters, while also producing a valuable biomass, and meeting drinking water standards during warmer months.
Read full abstract