In this study, based on the posttreatment strategy, blue-color-emissive ZnO submicron particles (B-ZnO SMPs) and red-color-emissive ZnO submicron particles (R-ZnO SMPs) were obtained from rationally designed Zn-infinite coordination polymer (ICP) precursors. After modification of thiol-containing aptamers, diverse spectral changes in the ultraviolet and visible regions of B- and R-ZnO SMPs toward different tau species were explored to construct a lab-on-a-ZnO-submicron-particle sensor array. Assisted by principal component analysis (PCA), the unique fingerprints of the sensor array enabled the simultaneous differentiation and quantitative detection of different tau species (tau381, tau410, and tau441) for the first time. Furthermore, the dynamic changes of tau441% (the ratio of the two most reported representative 4R isoform (full-length tau441) and 3R isoform (tau381)) in cerebrospinal fluid (CSF) during the Alzheimer's disease (AD) onset of Cd2+-exposed rats could also be monitored by the lab-on-a-ZnO-submicron-particle sensor array, which was supposed to be an effective hallmark and highly correlated with the formation of neurofibrillary tangles (NFTs). This study not only provides a further insight into the involvement of subchronic Cd2+ exposure in the tau etiology of AD but also offers more comprehensive and effective information about the asymptomatic stage of AD upon environmental risk, which has potential applications in the early diagnosis and therapy.