Purpose: We assessed the feasibility of qualitative, semiquantitative, and multiparametric quantitative magnetic resonance imaging (MRI) using a three-dimensional (3D) ultrashort echo time (3D-UTE) sequence together with 2D-T2 and 3D-T1 mapping sequences to evaluate normal and pathological discovertebral complexes (DVCs). We assessed the disc (nucleus pulposus [NP] and annulus fibrosus [AF]), vertebral endplate (cartilage endplate [CEP] and growth plate [GP]), and subchondral bone (SB) using a rat model of degenerative disc disease (DDD). We also assessed whether this complete MRI cartography can improve the monitoring of DDD. Methods: DDD was induced by percutaneous disc trituration and collagenase injection of the tail. Then, the animals were imaged at 4.7T. The adjacent disc served as the control. The MRI protocol was performed at baseline and each week (W) postoperatively for 2 weeks. Visual analysis and signal intensity measurements from the 3D-UTE images, as well as T2 and T1 measurements, were carried out in all DVC portions. Histological analysis with hematoxylin–eosin and Masson trichrome staining was performed following euthanization of the rats at 2 weeks and the results were compared to the MRI findings. Results: Complete qualitative identification of the normal zonal anatomy of the DVC, including the AF, CEP, and GP, was achieved using the 3D-UTE sequence. Quantitative measurements of the signal-to-noise ratio in the AF and NP enabled healthy DVCs to be distinguished from surgery-induced DDD, based on an increase in these values post-surgery. The 2D-T2 mapping results showed a significant increase in the T2 values of the AF and a decrease in the values of the NP between the baseline and W1 and W2 postoperatively (p < 0.001). In the 3D-T1 mapping, there was a significant decrease in the T1 values of the AF and NP between baseline and W1 and W2 postoperatively in immature rats (p < 0.01). This variation in T1 and T2 over time was consistent with the results of the 3D-UTE sequence. Conclusions: Use of the 3D-UTE sequence enabled a complete, robust, and reproducible visualization of DVC anatomy in both immature and mature rats under both normal and pathological conditions. The findings were supported quantitatively by the T2 and T1 mapping sequences and histologically. This sequence is therefore of prime interest in spinal imaging and should be regularly be performed.
Read full abstract