The human head can sometimes experience impact loads that result in skull fractures or other injuries, leading to the need for a craniectomy. Cranioplasty is a procedure that involves replacing the removed portion with either autologous bone or alloplastic material. While titanium has traditionally been the preferred material for cranial implants due to its excellent properties and biocompatibility, its limitations have prompted the search for alternative materials. This research aimed to explore alternative materials to titanium for cranial implants in order to address the limitations of titanium implants and improve the performance of the cranioplasty process. A 3D model of a defective skull was reconstructed with a cranial implant, and the implant was simulated using various stiff and soft materials (such as alumina, zirconia, hydroxyapatite, zirconia-reinforced PMMA, and PMMA) as alternatives to titanium under 2000N impact forces. Alumina and zirconia implants were found to reduce stresses and strains on the skull and brain compared to titanium implants. However, PMMA implants showed potential for causing skull damage under current loading conditions. Additionally, PMMA and hydroxyapatite implants were prone to fracture. Despite these findings, none of the implants exceeded the limits for tensile and compressive stresses and strains on the brain. Zirconia-reinforced PMMA implants were also shown to reduce stresses and strains on the skull and brain compared to PMMA implants. Alumina and zirconia show promise as alternatives to titanium for the production of cranial implants. The use of alternative implant materials to titanium has the potential to enhance the success of cranial reconstruction by overcoming the limitations associated with titanium implants.Graphical